

# Climate Smart Agriculture for Food Security

#### **Prof. Dong Hongmin**

Deputy Director General & Ph.D. Institute of Environment and Sustainable Development in Agriculture, CAAS donghongmin@caas.cn





# 1. Background

# 2. Work Progress

# 3. Proposal



### **Climate Smart Agriculture**

- Climate-smart agriculture (CSA) is an approach for developing agricultural strategies to secure sustainable food security under climate change.
- **CSA** aims to tackle three objectives:
  - Increasing agricultural productivity and incomes;
  - Adapting and building resilience to <u>climate change</u>;
  - Reducing and/or removing GHG emissions.

Why CSA is important for Climate change and Food Production?

http://www.fao.org/climate-smart-agriculture/en/



### Food Production is One of Major Objective of Addressing Climate Change

#### □ 《 UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE)》 (UNFCCC), Article 2

The ultimate objective of this Convention ...... is to achieve, ...... stabilization of greenhouse gas concentrations in the atmosphere at a level ...... Such a level should be achieved ...... to ensure that food production is not threaten.

#### □ 《 Paris Agreement》, Article 2.1 (b)

Increasing the ability to adapt to the adverse impacts of climate change and foster climate resilience and low greenhouse gas emissions development, in a manner that does not threaten food production;





#### **Agriculture Is A Major GHGs Emission Source – 13%**



Note: Figures may not equal 100% due to rounding.

100% = 6.4 Gt CO\_e

\* LULUCF = Land Use, Land Use Change, and Forestry.

\*\* Includes emissions from on-farm energy consumption as well as from manufacturing of farm tractors, irrigation pumps, other machinery, and key inputs such as fertilizer. It excludes emissions from the transport of food.

\*\*\* Excludes emissions from agricultural energy sources described above.

Source: WRI analysis based on UNEP(2012), FAO(2012e), EIA(2012), IEA(2012), and Houghton(2008) with adjustments.



### **Agriculture GHG Emissions in China**





# **GHG Emissions in China**

|                                                                                    | 1994 | 2005 | 2012  |
|------------------------------------------------------------------------------------|------|------|-------|
| 温室气体排放总量(考虑LUCF)<br>Total GHG emission with LUCF<br>(Pg CO₂e)                      | 3.65 | 7.05 | 11.32 |
| 年温室气体排放增加速率<br>Increase rate of total GHG emissions (Pg<br>CO₂e/year)              | 0.28 | 0.47 |       |
| 农业源温室气体排放<br>Emission from agriculture sector<br>(Pg CO2e)                         | 0.61 | 0.82 | 0.92  |
| 农业源年温室气体排放增加速率<br>GHG Increase rate in agri. sector<br>(Tg CO <sub>2</sub> e/year) | 17.5 | 11.1 |       |
| 农业源对全国温室气体贡献<br>Contribution of Agriculture (%)                                    | 16.7 | 11.6 | 8.1   |



### **Climate Change Impact on Yield in China**

By 2030, plant production may reduce 5%-10%, due to high temperature, frequent drought and flood, and water shortage





### **Extreme Weather Impact in China**



Annual Variation of GGP in China(1949~2010)



Drought



Flooding



Hail

11

#### **Caused by extreme climatic event in 2009**

- grain losses reached 55 million tones
- 10% of total grain production



# The 13th five-year plan for economic and social development

#### **China Responded to Global Climate Change**

While working hard to both adapt to and slow down climate change, we will take active steps to control carbon emissions, fulfill our commitments for emission reduction

#### Greenhouse gas emissions control

- ✓ Effectively control carbon emissions in key industries,
- ✓ Control the emissions of non- $CO_2$  greenhouse gases.
- ✓ Establish national carbon trading scheme
- ✓ Implement MRV and quota management for major carbon emitters
- / Improve statistic, accounting and performance evaluation

**During the 13<sup>th</sup> five-year period, carbon dioxide per unit GDP will decrease by 18% as a binding indicator** 



#### **China's Nationally Determined Contributions**

#### China NDC are as follows

- ✓ To achieve the peaking of carbon dioxide emissions around 2030 and making best efforts to peak early
- ✓ To lower carbon dioxide emissions per unit of GDP by 60% to 65% from the 2005 level

#### **Agricultural related content in NDC**

- ✓ To promote the low-carbon development in agriculture, making efforts to achieve zero growth of fertilizer and pesticide utilization by 2020
- To control methane emissions from rice fields and nitrous oxide emissions from farmland
- ✓ To construct a recycle agriculture system, promoting comprehensive utilization of straw, agricultural wastes and animal manure



# Work Progress



### I. GHG emissions and mitigation



#### **Climate change related work in CAAS**





## **1. Site Level**















### **Monitoring Network-livestock**





### **Monitoring Network-Grass Land**





### **Monitoring Network-Cropland**





### 1. Site level Identification of mitigation options

4-year continuously monitoring CH₄ and N₂O emissions from double rice paddies
▶ Different fertilizers (Urea, Capsuled urea, urea plus nitrification inhibiter)
▶ Different water regime (traditional water irrigation, water saving irrigation)





#### **GHG Emission Reduction by Formula Fertilization**





The area of formula fertilization in China from 2006 to 2013

The weighted average of fertilizer saving for three crops is  $27.23 \pm 7.42$  kg·ha<sup>-1</sup>.



### Project/Enterprise level----MRV of Mitigation

- Meta-analysis to obtain emission factors and carbon sequestration factors under different condition
- Development of carbon trading methodologies for CDM, VCS and CCER projects
- Guidelines for GHG accounting and reporting for planting enterprises and livestock enterprises



### 2. Project/Enterprise level Meta-analysis Carbon Sequestration Factor









#### 2. Project/Enterprise Level Mitigation Carbon Trading Methodologies

Development of methodologies for carbon trading systems (CDM, VCS, CCER)

- Methane recovery in agricultural activities at household/small farm level (CDM: AMS-III.R)
- Sustainable Grassland Management (SGM) (VCS: VM0026)
- Carbon sequestration and GHG mitigation of conservation tillage(CCER: CMS-083-V01)
- CH4 mitigation from ruminant animals (CCER: CMS-081-V01)
- GHG mitigation through animal manure compost (CCER: CMS-082-V01)
- GHG mitigation through fertilizer management
- Carbon sequestration and GHG mitigation of biochar application



2. Project/Enterprise Level Mitigation National Standards on Accounting & Reporting for Enterprises

- Guidelines of GHG emission accounting & reporting---Planting Enterprise
- Guidelines of GHG emission accounting & reporting---Livestock Enterprise
  - Accounting boundary
  - Accounting methods
  - Monitoring requirements
  - Reporting requirements

The standards can support MRV of mitigation actions at enterprise level



#### Subnational / National Level Compilation of GHG Inventory, Tracking Mitigation Progress

- Compilation of GHG emission inventory
- Evaluation of low carbon agricultural development P&Ms effects on GHG emissions
- Development of MRV system for mitigation actions at national or subnational levels



#### **3. National Level Inventory and Mitigation Compilation of GHG Emission Inventories**

- CH<sub>4</sub> emissions from livestock
- $CH_4$  and  $N_2O$  emissions from manure management systems
- Carbon sequestration in grassland

| 中华人民共和国<br>气候変化初始国家信息通报<br>The People's Republic of China<br>Infrag National Communication on Climate Change | Second National Communication<br>on Climate Change of<br>The People's Republic of China | The People's Republic of<br>China<br>First Biennial Update<br>Report on Climate Change | Third National<br>Communication<br>On Climate Change of<br>The people's Republic of<br>China<br>The people's Republic of<br>China<br>Second Biennial Update<br>Report on Climate Change |  |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A.0. 2005                                                                                                    |                                                                                         | December 2016                                                                          | available at the end of 2018                                                                                                                                                            |  |



# II. Climate Change Impact Assessment



1960

1970 1980 1990 2000 2010 2020

2030 2040 2050 2060 2070 2080 2090 2100

Year



1.0



#### FACE System

Exploring the impact of elevated CO<sub>2</sub> and temperature on crop yields and nutrient cycling
 Identifying crop varieties adapting to Climate Change







#### **National Basic Research Program**

**Impact and Adaptation Mechanism of Climate Change on Food Production in China** 

**1**. Depicted the change trends of climate indicators, including water and temperature, of major crops

**2.** Analyzed regional prevailing mechanism of plant diseases and its impact on productivity

**3. Illustrated the Climate Change impact on crop planting system and regional distribution** 

4. Discovered the impact and adaptation mechanism of Climate Change on the yields of major crops

5. Assessed the Climate Change impact on food security in long term in China





National-Scale Crop Spatial Distribution Data Uploaded to "Spatial Production Allocation Model(SPAM)"

http://www.mapspam.info/









### **Climate Smart Agriculture**

- Improve *productivity for* food supply
  - Genetic exploring and climate change ready varieties
  - Technical Integration and intensification
- Enhance *climatic resilience* for ecosystem health
  - Multi- and/or Inter-cropping system to improve profit and reduce environmental and natural disaster risks
  - Crop-based livestock (dry subhumid)
  - Grassland-based livestock (arid and semiarid)
- Intensify *carbon management* for C sequestration & GHGs reduction
  - Enhance soil organic carbon and fertility
  - GHGs emission Reduction



**Targeted Regions (Countries):** China, Central and Western Asia, North Africa, and South Asia



### **Theory and Methodology of CSA**

Fully understanding of the dynamics of climate change and how will climate change affect the agro-ecosystems and agricultural sector

- Study the dynamics of climate change, responses and adaptation mechanisms of crops and agro-ecosystems to climate change;
- Develop the climate change impact assessment model to identify impact pattern and trends of climate change, and assess impacts for different regions



## **Improving Agricultural Productivity**

- Study on key technologies related to water harvesting, water-saving irrigation and water-fertilizer integration
- Develop climate ready crop varieties, and optimize cropping system
- Develop the integrated technology system for intensive oasis production system and dryland agricultural production system to enhance productivity and resilience to climate change



### **Impact Assessment & Adaptation**

- Achieve precise mapping of crop distribution and of farming conditions, disasters monitoring, production estimation, and information services for decision-making.
- Develop adaptation strategies and early warning mechanism for targeted countries.







# EQA-CANS

### **GHGs** Mitigation & C Sequestration

- Improve estimation and monitoring of emissions in typical systems
- Develop and identify of Mitigation technology or systems to reduce emissions, increase carbon sequestration, through improving productivity and efficiency
- **Demonstration and extension** of the integrated technology system of carbon sequestration and mitigation technologies







## **Thanks for your attention !**

